
Received: 22 January 2018 Revised: 17 May 2018 Accepted: 3 July 2018

DOI: 10.1002/mpr.1742
OR I G I N A L A R T I C L E
A Bayesian multivariate approach to estimating the prevalence
of a superordinate category of disorders

Jonathan M. Fawcett1 | Nichole Fairbrother2 | Emily J. Fawcett3 | Ian R. White4
1Department of Psychology, Memorial

University of Newfoundland, St. John's, NL,

Canada

2Department of Psychiatry and the Island

Medical Program, University of British

Columbia, Vancouver, BC, Canada

3Student Wellness and Counselling Centre,

Memorial University of Newfoundland, St.

John's, NL, Canada

4MRC Clinical Trials Unit, University College

London, London, UK

Correspondence

Jonathan M. Fawcett, Department of

Psychology, Memorial University of

Newfoundland, St. John's A1C 5S7, NL,

Canada.

Email: jfawcett@mun.ca

Funding information

Medical Research Council, Grant/Award

Number: MC_UU_12023/21; Natural Sciences

and Engineering Council of Canada (NSERC)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

This is an open access article under the terms of th

the original work is properly cited.

© 2018 The Authors International Journal of Meth

J. M. F. and I. W. conceived of the statistical mode

used in the case study; all authors contributed to th

opment Team for general feedback (provided via

acknowledge Drs. Jane Fisher, Karen Wynter, Hea

Int J Methods Psychiatr Res. 2018;27:e1742.
https://doi.org/10.1002/mpr.1742
Abstract

Objective: Epidemiological research plays an important role in public health, facili-

tated by the meta‐analytic aggregation of epidemiological trials into a single, more

powerful estimate. This form of aggregation is complicated when estimating the prev-

alence of a superordinate category of disorders (e.g., “any anxiety disorder,” “any car-

diac disorder”) because epidemiological studies rarely include all of the disorders

selected to define the superordinate category. In this paper, we suggest that estimat-

ing the prevalence of a superordinate category based on studies with differing

operationalization of that category (in the form of different disorders measured) is

both common and ill‐advised. Our objective is to provide a better approach.

Methods: We propose a multivariate method using individual disorder prevalences

to produce a fully Bayesian estimate of the probability of having one or more of those

disorders. We validate this approach using a recent case study and parameter recov-

ery simulations.

Results: Our approach produced less biased and more reliable estimates than other

common approaches, which were at times highly biased.

Conclusion: Although our approach entails additional effort (e.g., contacting authors

for individual participant data), the improved accuracy of the prevalence estimates

obtained is significant and therefore recommended.
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1 | INTRODUCTION

Epidemiology contributes to public health by characterizing the distri-

bution of disorders as a means of informing public policy and optimally
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Mazmanian, 2016; Russell, Fawcett, & Mazmanian, 2013; Simpson,

Blizzard, Otahal, Van der Mei, & Taylor, 2011). Bayesian techniques

are often used due to their flexibility and capacity to produce a cred-

ible estimate of beliefs given data from multiple sources (e.g., Ades &

Sutton, 2006; Greenland, 2006).

Whereas aggregating individual disorder estimates is routine, it is

unclear how tomodel the prevalence of superordinate categories—such

as “any anxiety disorder” or “any cardiac disorder”—operationalized by

combining multiple underlying conditions. We focus on an example

from mental health, but our methods apply to any superordinate cate-

gory. Within the health professions, superordinate categories play an

important role by easing the interpretation and categorization of related

symptoms and simplifying the identification of at‐risk populations with-

out becoming lost in the minutiae of individual disorders. They also

serve important social functions. For example, nonexperts better com-

prehend broad statements (one in five women suffer from anxiety dis-

orders) than more specialized statements (one in 10 women suffer

from social anxiety). Superordinate estimates therefore help generate

the “big picture” within which public campaigns are most effective.

One challenge is that the category itself is often operationalized

differently across the literature. For example, studies of anxiety disor-

ders often include only a subsample of the eligible disorders—because

they are the focal target or because a thorough examination of the

individual disorders is too intensive. Prevalence might therefore be

defined in one study as the probability of having panic disorder or ago-

raphobia but in another study as the probability of having social pho-

bia or obsessive–compulsive disorder. This represents the “apples and

oranges” problem described in most textbooks (e.g., Borenstein,

Hedges, Higgins, & Rothstein, 2009, p. 379): If the underlying con-

struct varies to such a degree between studies, their aggregation rests

on questionable grounds.

The dominant solution has been to ignore variation in the disor-

ders measured (e.g., Goodman, Watson, & Stubbs, 2016; Guo et al.,

2016) or to include the number of disorders measured as a predictor

(e.g., Baxter, Scott, Vos, & Whiteford, 2013; Steel et al., 2014).

Although straightforward, either approach is likely to produce poor

estimates. The exclusion of individual disorders in a category‐level

estimate for a given study should negatively bias category prevalence.

Including the number of disorders as a predictor and generating the

prevalence of a study measuring all disorders may mitigate estimation

bias, but this approach assumes that eligible disorders are equally

prevalent—meaning that an increase of one disorder always influences

the category‐level prevalence in the same manner. Although poten-

tially true in some cases, it is often a questionable assumption.

An alternative approach is to perform a multivariate meta‐analysis

of the individual disorders accounting for the fact that disorder preva-

lences are likely to be correlated both within and between studies

(Jackson, Riley, & White, 2011). However, current multivariate

approaches cannot estimate the prevalence of a superordinate cate-

gory. This paper proposes a novel multivariate Bayesian approach that

estimates the prevalence of a superordinate category while providing

a more complete picture of its constituent disorders. We avoid aggre-

gating prevalence estimates that vary in their operationalization, and

instead model the prevalence estimates pertaining to the individual

disorders and their interrelations. These parameters can be used to
estimate the probability of having at least one of those disorders. In

the following sections, we describe and then validate our model using

a case study and parameter recovery simulations.
2 | METHODS

2.1 | Model

Put simply, our model uses aggregate and individual participant data

(IPD) to estimate the prevalence of each individual disorder and the

IPD to estimate the comorbidity between disorders. This portion of

our model is implemented using Version 2.16 of the Stan modeling

language (Stan Development Team, 2016) based on a binomial likeli-

hood with a probit link function to estimate the mean prevalence

and variability of each disorder across studies. Relevant code is avail-

able in Appendix A. In that appendix, Model 1 applies in the absence

of IPD and assumes that the probit‐transformed latent correlations

between the disorders are known. Model 2 uses IPD to estimate

the probit‐transformed latent correlations between the disorders,

incorporating uncertainty in these values into model estimates. In

either case, we use those parameters to simulate a large sample of

subjects from which to estimate the prevalence of having at least

one disorder. This is a separate step conducted using the R program-

ming language.

We define μs,d to be the probit‐transformed prevalence of disor-

der d in study s, and μs, *
= (μs, 1,…, μs, D) to be the vector of all

probit‐transformed prevalences in study s. For the between‐study

portion of our model, we assume that μs,d follows a normal distribution

with mean θd and standard deviation τd, and μs, * follows a multivariate

normal distribution with correlations given by matrix ωB. The calcula-

tions were implemented using a Cholesky factor decomposition of

the correlation matrix to improve sampling efficiency, with a uniform

LKJ prior (Lewandowski, Kurowicka, & Joe, 2009) for the Cholesky

decomposition of ωB (see the Stan Reference Manual). Thus, we have

the following:

μs;* ∼ MVN θ*;ΣB
� �

; ΣBdd′ ¼ τd × ωBdd′ × τd′ ; Chol ωBð Þ ∼ LKJ 2ð Þ:

Predictors could be incorporated by adding an additional term β
*
xs

to θ
*
where xs is the predictor value in study s.

For the probit‐transformed population prevalences (θd), we used a

mildly informative prior based on expert opinion. Because our case

study models rare disorders, we used a normal distribution

θd ∼ N(−1.88, 0.302),implying that population prevalences Φ(θd) rang-

ing from 0.6% to 10.0% would be considered probable (within 2 SD)

for any given disorder. For the between‐study estimates of standard

deviation for each disorder (τd), we employed a half‐normal distribu-

tion (truncated at 0) τd ∼ N(0,0.252) with a location parameter equal

to 0 and a standard deviation of 0.25, such that values larger than

0.5 would be unlikely. Presuming a mean prevalence of 3% for a given

disorder, this would mean that 95% of “true” study‐specific preva-

lences lie between 0.2% and 18.9%; we felt this to be a reasonable

range that balances the influence of the prior with convergence.

Models using broader priors on τd produced similar results, albeit with

less shrinkage, but did not converge as readily and were characterized
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by greater uncertainty in τd due to the relatively small amount of data

available for any given disorder.

The within‐study model is broken into two parts—one dealing

with the aggregate data and the other dealing with the IPD. For stud-

ies where the IPD were unavailable, the number of participants with a

given disorder (ns,d) was modeled as arising independently from a bino-

mial distribution with sample size Ns equal to the sample size of study

s and probability defined earlier:

ns;d ∼ Binomial Φ μs;d
� �

;Ns
� �

:

For studies where the IPD were available, prevalence was esti-

mated using individual participant diagnoses. The binary (0 = no diag-

nosis, 1 = diagnosis) outcomes for each combination of participant

and disorder were modelled as dichotomizations of an underlying mul-

tivariate normal distribution, with a threshold at 0 and a latent corre-

lation matrix representing the relative comorbidity between

disorders (ωC), to which we again applied an LKJ prior. Parameters

for disorders not reported by that study were imputed within the

model itself. Here, we define eys,d,i as the underlying trait giving rise

to participant i in study s suffering from disorder d whereby ys,d,i as

the observed outcome.

ys;d;i ¼ eys;d;i > 0
� �

; eys;*;i ∼ MVN μs;*;ωC

� �
; Chol ωCð Þ ∼ LKJ 2ð Þ:

We fit the model using Stan but estimate superordinate category

prevalence using a script built in R 3.3.1 (R Core Team, 2016; sample

code provided in Appendix B). Within this script, we first use the

posterior distribution from our model to generate a large number of

hypothetical participants, each taken from a different hypothetical

study that is also generated from the posterior distribution; we do this

by drawing 5,000 values from the posterior of μs,* and then drawing a

single participant (eys;*;i and therefore ys,*,i) for each. This procedure

makes use of the within‐study correlations between the disorders

(ωC) estimated from the IPD (if present) or other sources (e.g., esti-

mated elsewhere or arbitrarily assumed). The rows (i) of the resulting

matrix represent individual hypothetical participants whereas the col-

umns (d) represent individual disorders and each binary value indicates

whether hypothetical participant i was diagnosed with disorder d.

These binary values are summed for each row to simulate the number

of diagnoses for a given hypothetical participant, with the overall

prevalence representing the proportion of hypothetical participants

with one or more disorder. This approach estimates the probability

of a participant suffering from one or more AD while propagating

our uncertainty across parameters, including between‐study heteroge-

neity (τd). Prediction intervals for a new study are calculated in the

same manner, with the exception that only a single “true” prevalence

is estimated for each posterior sample (i.e., 5,000 hypothetical partic-

ipants drawn from the same hypothetical study).

2.2 | Implementation and sampling parameters

Stan is based on a variant of Markov Chain Monte Carlo sampling and

is described in greater detail elsewhere (Hoffman & Gelman, 2014).

Each model employed four independent chains. For the case study,

chains included 5,000 iterations minus a warm‐up period of 2,500
resulting in 10,000 usable samples; for the simulations, chains included

1,000 iterations minus a warm‐up period of 500 resulting in 2,000

usable samples. We recommend the former but reduced this number

to make the simulations tractable; fewer samples in our simulations

should at worst handicap our estimates. Convergence was tested via

visual inspection and using the R‐hat statistic (in all cases R‐hat ≈ 1

and NEffective > 200, indicating convergence; Gelman & Hill, 2007).

We report all parameters in terms of their median value as well as

their highest density interval (HDI; Kruschke, 2014).

3 | RESULTS

3.1 | Case study of peripartum anxiety

3.1.1 | Case study description and parameters

We first illustrate our model using 10,033 participants from 18 articles

reporting prevalence estimates for at least one of six selected anxiety

and related disorders (AD; panic disorder, obsessive–compulsive disor-

der, generalized anxiety disorder, social phobia, specific phobia, and/or

posttraumatic stress disorder; remaining AD are omitted for the sake of

exposition). These data are summarized in Table 1. Of these data, we

retrieved IPD for 1,506 participants (Chaudron & Nirodi, 2010; Fadzil

et al., 2013; Fairbrother, Janssen, Antony, Tucker, & Young, 2016;

Fisher, Wynter, & Rowe, 2010; Matthey & Ross‐Hamid, 2011; Usuda

et al., 2016; Zar, Wijma, & Wijma, 2002). The average number of disor-

ders measured by a given study was 3.4; Figure 1 depicts the percent-

age of participants diagnosed with at least one disorder as a function of

the number of disorders measured. These studies represent a partial

sample from a meta‐analysis of AD within peripartum populations

(Fawcett, Fairbrother, Cox, White, & Fawcett, 2018). A partial sample

was selected for illustration purposes as it allowed us to focus on the

methodology itself rather than becoming lost in the details of the

included articles; for this reason, it is important that the present analy-

ses be used for demonstration purposes only. All but two studies

(Fisher, Tran, Kriitmaa, Rosenthal, & Tran, 2010;Wenzel, Haugen, Jack-

son, & Brendle, 2005) permitted calculation of a superordinate (i.e.,

“any disorder”) prevalence estimate—representing the probability of

having at least one of the disorders provided above; these studies

were excluded from Section 3.1.2 but included in Section 3.1.3.

They were selected despite the missing “any disorder” prevalence

estimates to highlight the fact that our model makes better use of

the available data.

3.1.2 | Univariate random‐effects models using “any
disorder” estimates

We first analyzed the “any disorder” prevalences, using a series of uni-

variate random‐effects models meant to emulate current practice. In

keeping with how these analyses have been conducted in the past,

we logit‐transformed the estimates for each study and aggregated

them using the rma function from the metafor package (Viechtbauer,

2010). We fit this model twice—once to the full data set, including

studies measuring any number of disorders, and again including only

studies measuring three or more disorders. All analyses are summa-

rized in Table 2. Clearly, requiring the inclusion of at least half of the

measured disorders increased the estimated prevalence. This might



FIGURE 1 Prevalence (%) of “any” (i.e., having at least one) anxiety
or related disorder (panic disorder, obsessive‐compulsive disorder,
generalized anxiety disorder, social phobia, specific phobia, and
posttraumatic stress disorder) plotted against the number of disorders
that were measured in that sample. Marker size represents the relative
sample size pertaining to each point, ranging from N = 24 to N = 2,202

TABLE 1 Descriptive statistics and prevalence estimates (%) reported by each study included in the case study

First author Year N Prevalence any Panic disorder OCD GAD Social phobia Specific phobia PTSD

Zar* 2002 453 21.9 1.3 0.2 0.9 2.7 18.3 1.3

Wenzel 2003 68 4.4 – – 4.4 – – –

Wenzel 2005 147 – 1.4 2.7 8.2 4.1 – –

Uguz 2007 434 3.5 – 3.5 – – – –

Rogal 2007 1100 3.0 – – – – – 3.0

Mota (Preg.) 2008 451 13.2 2.1 – 1.9 3.3 9.3 –

Mota (Post.) 2008 1061 15.0 4.0 – 2.3 2.5 10.2 –

Seng 2009 1581 7.9 – – – – – 7.9

Kersting 2009 65 0.0 0.0 0.0 – – 0.0 0.0

Fisher (Preg.) 2010a 199 – 1.5 – 10.6 – – –

Fisher (Post.) 2010a 165 – 4.2 – 11.5 – – –

Chaudron* 2010 24 37.5 4.2 29.2 – – 8.3 8.3

Fisher* 2010b 196 8.7 0.0 – 2.6 3.6 3.6 –

Uguz 2010 309 15.5 1.9 5.2 3.6 3.2 3.2 0.0

Matthey* 2011 171 14.0 2.9 2.9 11.1 4.1 – 0.6

Prenoveau 2013 2202 5.5 – – 5.5 – – –

Fadzil* 2013 175 6.3 5.7 0.0 0.0 0.6 – 0.0

Kim 2014 745 6.6 – – – – – 6.6

Usuda* 2016 177 3.4 1.1 1.7 0.0 1.1 – 0.6

Fairbrother* 2016 310 15.2 0.7 3.6 3.2 5.2 7.4 0.7

Note. Prevalence estimates from Matthey and Ross‐Hamid (2011) were calculated from raw data inclusive of additional subjects beyond those reported in
their article. Studies contributing IPD are marked with an asterisk (*) and “–” represent values that were not reported. IPD: individual patient data; Preg.:
pregnant group; Post.: postpartum group; OCD: obsessive–compulsive disorder; GAD: generalized anxiety disorder; PTSD: posttraumatic stress disorder.
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suggest that researchers should require a minimum number of disor-

ders for inclusion; however, the only logical criterion would require

inclusion of all disorders. Unfortunately, such a criterion would

exclude most of the extant data; only three studies (Fairbrother

et al., 2016; Uguz, Gezginc, Kayhan, Sarı, & Büyüköz, 2010; Zar

et al., 2002) in the current sample provided “any disorder” prevalence

estimates inclusive of all six disorders.

Another approach is to use the number of measured disorders to

predict the prevalence of a hypothetical study measuring all disorders
(e.g., Baxter et al., 2013). We again fit this model twice, once including

all studies and again including only studies measuring three or more

disorders. This approach predicts a higher prevalence estimate but is

unstable (see Sections 3.1.2 and 3.1.3). Importantly, whereas the

effect of number of disorders was significant in the former model

(P < 0.001), it was not significant in the latter model (P = 0.693)—likely

owing to reduced statistical power combined with range restriction.

This would be worsened should the number of disorders be treated

categorically (e.g., 1–2 disorders and 3–4 disorders;e.g., Baxter et al.,

2013) because converting continuous predictors into categorical ones

reduces statistical power (Gelman & Park, 2009).
3.1.3 | Bayesian multivariate models

We next applied our model to the same data using the approach

described in Sections 2.1 and 2.2. From the posterior of this model,

we calculated the probability of having one or more, two or more,

and so forth disorders. As depicted in Table 3, this estimate is close

to those produced by either the univariate analysis of studies measur-

ing all disorders or the initial regression model. However, the HDI is

equivalent to or narrower than the confidence intervals from any of

the previous models—even though Bayesian confidence intervals for

aggregate effects are generally broader than their Frequentist coun-

terparts because the former take uncertainty in τ into account (in this

case for each disorder) whereas the latter assume that τ is known. This

reflects—in part—the greater ability of our Bayesian model to make

use of all data.

We next examined how well our model captured the data.

Figure 2 depicts observed and predicted disorder prevalence for each



TABLE 2 Prevalence estimates from the case study for each estimation procedure

Method No. of samples Disorder Prev. τProbit τLogit

BMV‐IPD 20 (7 IPD) Any 19 [15, 23] – –

Panic 2 [1, 3] .26 [.11, .45] –

OCD 3 [1, 5] .47 [.26, .71] –

GAD 4 [2, 6] .41 [.26, .60] –

Social Phobia 3 [2, 4] .11 [.00, .24] –

Specific Phobia 6 [3, 9] .36 [.19, .58] –

PTSD 2 [1, 3] .47 [29, .70] –

FRE 17 Any 9 [6, 13] .48 .77

FRE‐H 11 Any 13 [9, 18] .40 .64

FRE‐A 3 Any 18 [14, 23] .14 .22

FRE‐M 17 Any 16 [10, 23] .33 .53

FRE‐MH 11 Any 14 [7, 25] .44 .70

Note. Individual disorder estimates are also provided for our preferred multivariate approach. Estimates of τ were calculated in probit‐space for the multi-
variate Bayesian approach and in logit‐space for the univariate Frequentist approaches; for comparison, the logit values were converted into approximate
probit space via division by 1.6. BMV‐IPD: Bayesian multivariate w/individual patient data; FRE: Frequentist univariate; FRE‐H: as FRE but including studies
reporting at least three disorders; FRE‐A: as FRE but including studies reporting six disorders; FRE‐M: Frequentist univariate w/predictor; FRE‐MH: as FRE‐
M but including studies reporting at least three disorders.

TABLE 3 Probability of having at least 1, 2, 3, or 4 anxiety or related disorders (AD) within our case study as fit using a multivariate Bayesian
model with IPD (Model 2)

Number of disorders

1+ 2+ 3+ 4+

Prevalence 19% (15%, 23%) 5% (3%, 7%) 1% (1%, 2%) 0% (0%, 1%)

Prediction Interval (7%, 34%) (1%, 10%) (0%, 3%) (0%, 1%)

Note. The estimated probability of having 5+ disorders was negligible and therefore excluded. Prevalence estimates refer to the prevalence within a “typ-
ical” study whereas the prediction intervals indicate instead the range of credible values estimated from a new study similar to those included in the model.
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study. All estimates fall well within the boundaries of the model pre-

dictions. We also generated “any disorder” predictions for each study

in the same manner, with the “any disorder” prevalence defined as the

probability of having at least one of the disorders measured in that par-

ticular study. These predictions are provided in Figure 3 alongside the

reported “any disorder” prevalence values, where available. Despite

these data not entering our model, they are nonetheless well repre-

sented by the model's predictions.

The above analyses made use of mildly informative priors based

on expert knowledge. We repeated the analysis using less informative

(hence less realistic) priors. The uninformative prior placed on mean

prevalence estimates was based on a normal distribution with a mean

of −1.88 and a standard deviation of 1, calibrated such that mean

prevalences ranging from <0.1% to 54.8% would be considered prob-

able for any given disorder. For the between‐study estimates of stan-

dard deviation for each disorder (τd), the SD of the half‐normal was

increased to 0.35, meaning that values higher than 0.70 would be

uncommon. Presuming a mean prevalence of 3% for a given disorder,

a probit‐transformed standard deviation of 0.70 means that the “true”

prevalence within any given study might vary credibly from <0.1% to

31.6%. Despite these unrealistic prior expectations, the model output

remained largely unchanged—producing an overall estimate of 20%,

HDI95% (15%, 26%). Although the HDI has increased in size, this is

because the priors allocated credibility to the possibility that as many
as 80% of the participants in a typical study suffered from a given dis-

order, increasing uncertainty in τd.
3.2 | Parameter recovery simulations

3.2.1 | General method

We next conducted three parameter recovery simulations comparing

our model against the approaches described in Section 3.1.2. The first

is based on the case study with respect to the number of samples, dis-

orders measured, participants per sample, and so forth. The second

and third explore how different levels of between‐study variability

influence performance across estimation approaches. Each simulated

dataset contained 20 studies with sample sizes randomly drawn from

an exponential distribution with a rate of .005 to which 100 was

added. A measurement process simulated the tendency for studies

not to measure all disorders by assigning each disorder a probability

for inclusion in that study. To ensure all disorders were represented,

the first two studies in each simulation were exempt from this

measurement process. The probability of having one or more of

the measured disorders was then calculated for each study given

the disorders measured; these values were used to test alternate esti-

mation approaches. The first seven studies in any given simulation

provided IPD.



FIGURE 2 Prevalence (%) for each anxiety or related disorder (panic disorder, obsessive‐compulsive disorder, generalized anxiety disorder, social
phobia, specific phobia, and posttraumatic stress disorder) and samplewithin our case study, simulated based on sample size and parameter estimates
derived from our model. Circles represent median prevalence estimates, and error bars represent HDI95%; the reported prevalence for each study is
denoted by an “X.” Predictions are provided for studies not measuring a given disorder, representing the probable prevalence of that disorder within
that sample. These studies can be identified by the absence of an “X” in the plot and the absence of a numerical prevalence value in the third column
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For our first simulation, we generated data like the case study

provided in Section 3.1.1. We used the median ωC and ωB matrices

from that model to emulate a realistic distribution of interdepen-

dencies. Similarly, the “true” prevalences for each disorder were

set at 1.5%, 2.0%, 2.5%, 3.5%, 4.0%, and 6.0%. Probit‐transformed

heterogeneity (τ) was derived from the values estimated in Section

3.2 (rounded to 0.50, 0.25, 0.45, 0.10, 0.40, and 0.35) and the

measurement probabilities were set to 50%, 50%, 70%, 50%, 70%,

and 40%.

Our second and third simulations explored the effect of heteroge-

neity by changing τ to 0.1 (low heterogeneity) or 0.4 (high heterogene-

ity) for all disorders. In both cases, we also made “true” prevalences

more diverse than in our case study (1.0%, 2.0%, 3.0%, 5.0%, 7.0%,

and 9.0%). Our goal in doing so was to evaluate how the predictor
approach would perform when the assumption of equal prevalence

across disorders was violated.

For each simulated data set, the prevalence of having one or more

of the individual disorders was estimated using the univariate

approaches presented in Section 3.1.1 (e.g., Baxter et al., 2013; Good-

man et al., 2016). We also used our Bayesian approach, first assuming

that the between‐disorder (ωC) correlation matrix was known (Model

1), then estimating this matrix from independent participant data

(Model 2). We fit the following to each simulated sample:

a.) FRE: Frequentist random effects model fit to the “any disorder”

prevalences ignoring the number of disorders measured;

b.) FRE‐H: as FRE but only including studies that reported at least

half of the disorders;



FIGURE 3 Prevalence (%) of having at least one anxiety or related disorder (panic, obsessive‐compulsive disorder, generalized anxiety disorder,
social phobia, specific phobia, and posttraumatic stress disorder) for each study within our case study simulated based on sample size and
parameter estimates derived from our model. Circles represent median prevalence estimates and error bars represent HDI95%; the reported
prevalence for each study is denoted by an “X.” Predictions are provided for studies for which the “any disorder” prevalence was unavailable,
representing the probable prevalence of having at least one disorder within that sample. These studies can be identified by the absence of an “X”
in the plot and the absence of a numerical prevalence value in the third column.
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c.) FRE‐M: Frequentist random effects model fit to the “any disor-

der” prevalences including the number of disorders measured

as a predictor and estimating the prevalence of a study measur-

ing all disorders;

d.) FRE‐MH: as FRE‐M but only including studies which reported at

least half of the disorders;

e.) BMV‐K: Bayesian multivariate approach fit to the individual dis-

order estimates, using only aggregate data and assuming ωC is

known (Model 1);

f.) BMV‐IPD: Bayesian multivariate approach fit to the individual

disorder estimates, using both aggregate and IPD and estimating

ωC from the model (Model 2);

For each model including a predictor, we also recorded the asso-

ciated P value. We ran each simulation 100 times—with every iteration

representing a simulated meta‐analysis. Iterations required ~6 hr each.

For each simulation study, the “true” prevalence of having at least one
FIGURE 4 Prevalence (%) of having one or more disorder within eac
described in text for Simulation 1 (τ and prevalence based on case study),
prevalence is represented by a dotted line within each plot
disorder was estimated by simulating IPD for 10,000 participants—

each from a separate study—10,000 times, calculating the overall

prevalence for each and taking the median.
3.2.2 | Simulation results

Each panel of Figure 4 depicts the prevalence of having at least one

disorder as estimated by each procedure within each simulation. The

“true” prevalence for each is depicted by a dotted line; these “true”

prevalences depend on individual disorder heterogeneity and hence

differ across simulations.

Neither ignoring the number of disorders in each study nor includ-

ing them as a predictor is adequate. Ignoring variation in the number

of measured disorders tended to catastrophically underestimate the

“true” prevalence. This underestimation was mildly improved by

requiring that a nominal number of disorders be measured for inclu-

sion; we included as our cutoff the midpoint of the number of disor-

ders measured, but this procedure should approach an unbiased
h simulated meta‐analysis using each of the estimation approaches
Simulation 2 (τ = 0.1),s and Simulation 3 (τ = 0.4); the “true”



TABLE 4 Coverage statistics and mean confidence interval width
(defined as the difference between upper bound and lower bound)
within each simulated sample for each estimation approach and pre-
sented separately for Simulation 1 (τ and prevalence based on case
study), Simulation 2 (τ = 0.1), and Simulation 3 (τ = 0.4)

Coverage (%) Mean width (%)

Simulation 1

FRE 0 (0) 6

FRE‐H 16 (4) 7

FRE‐M 95 (2) 17

FRE‐MH 94 (2) 17

BMV‐AG 97 (2) 7

BMV‐IPD 98 (1) 7

Simulation 2

FRE 0 (0) 5

FRE‐H 2 (1) 5

FRE‐M 95 (2) 11

FRE‐MH 99 (1) 10

BMV‐AG 99 (1) 4

BMV‐IPD 100 (0) 4

Simulation 3

FRE 0 (0) 8

FRE‐H 13 (3) 9

FRE‐M 99 (1) 22

FRE‐MH 96 (2) 22

BMV‐AG 89 (3) 8

BMV‐IPD 94 (2) 8

Note. Value in brackets represents the Monte Carlo error for that estimate;
all Monte Carlo errors for mean width are less than 0.5% (maximum of
0.49% and minimum of 0.05%) and therefore would have rounded to 0.
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estimate as the required number of disorders approaches the total

number of possible disorders. Imposing this limitation necessarily

decreases the number of studies available for analysis, making it inef-

ficient. Including the number of disorders as a predictor resulted in an

unbiased but variable estimate. A slight positive bias emerged in Sim-

ulations 2 and 3, where the prevalences differ from one another to a

greater degree, and the variability of the estimate scaled with increas-

ing heterogeneity.

In contrast, the Bayesian models produced efficient estimates

with no discernable bias when heterogeneity was moderate or low

(Simulations 1 and 2), with a slight negative bias for BMV‐K (median

bias of approximately −1%) when heterogeneity was high (Simulation

3). This bias is slight, so we do not wish to over‐interpret; nonetheless,

we speculate that it arises because all values of τ within this simulation

are near the upper range of our prior. Therefore, a small amount of

shrinkage is expected. Estimation of τ has consequences for the over-

all prevalence in part because of the use of a normal distribution on

the probit scale: for a fixed probit‐transformed prevalence of less than

0 (corresponding to prevalences below 50%), increasing τ increases

both left and right tails on the probit scale, but this has a greater

impact for the right tail on the probability scale. As a result, larger τ

means larger prevalence (assuming μ is unchanged). Inspection of the

posterior estimates across our simulations supports this conviction—

with the τ for each disorder being underestimated on average by

0.05 (results not shown). Such underestimation is negligible for indi-

vidual disorders but could aggregate to produce a slight bias overall.

BMV‐IPD was unaffected.

Our model is further supported by coverage estimates and confi-

dence interval widths provided in Table 4. These estimates represent

the percentage of samples wherein the confidence or highest density

intervals included the “true” prevalence value. The predictor model

and the Bayesian model maintained nominal coverage across all simu-

lations (with the exception of BMV‐K in Simulation 3) whereas the

simple univariate models performed comparatively poorly. Confidence

interval widths from the predictor model were two to three times

wider than from the other methods.

Finally, for Simulation 1, the statistical power for testing the slope

for the number of measured disorders was relatively high (86%) in the

model inclusive of all studies but only moderate (52%) when studies

were required to measure half of the disorders for inclusion. The same

pattern was observed in Simulations 2 and 3, with the exception that

power was universally high when heterogeneity was low (99% and

90% for FRE‐M and FRE‐MH, respectively) and more variable when

heterogeneity was high (83% and 33% for FRE‐M and FRE‐MH,

respectively).

Differences in the precision of estimates from FRE‐M and BMV‐

IPD are larger in the simulations than in the case study. Because the

BMV‐IPD approach uses individual disorder estimates, the sample on

which our case study is based includes a preponderance of single

disorder papers that are otherwise rare in this type of analysis (e.g.,

Goodman et al., 2016) where studies measuring multiple disorders

are preferred. Our simulations match the overall mean number of dis-

orders measured from the case study but do not specifically reflect

this idiosyncratic quality. Single disorder estimates will be less vari-

able (they are affected by heterogeneity from only a single disorder)
and would also have a high degree of influence in the predictor anal-

ysis, stabilizing the slope and therefore increasing precision of the

estimate. Additional simulations support this interpretation, showing

that meta‐analyses forced to emulate the distribution of disorders

measured from the case study produce more precise estimates for

the predictor approaches due to reduced uncertainty in the slope

(results not shown). Importantly, inclusion of so many single disorder

estimates is uncommon and still rests on the assumption that disor-

ders are equally prevalent and comorbid. Our model outperforms a

purely predictor based model—even under these conditions—just

not as drastically.
4 | DISCUSSION

4.1 | Advantages

4.1.1 | More efficient use of data

Our model permits the combination of more information than is pos-

sible with a univariate approach. For example, the inclusion of single

disorder studies in a univariate analysis offers no specific advantage

and is liable to bias aggregate estimates. In our model, single disorder

studies inform the prevalence of the disorder in question—which in

turn improves the precision of our category‐level estimate. Further,
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whereas most studies include individual disorder prevalence estimates

—not all studies provide workable category‐level estimates, either due

to inclusion of ineligible disorders (e.g., depression) or omission of the

“any disorder” prevalence. Therefore, the number of studies eligible

for inclusion is higher for our model, and the data obtained are put

to better use.
4.1.2 | Access to an informative posterior
distribution

Our model produces a posterior distribution representing the combi-

nation of all pertinent knowledge. In addition to prevalence estimates

for the individual disorders, this posterior provides the probability of

any arbitrary event or confluence of events. For example, Table 3 pro-

vides the probability of having any number of disorders. It is possible

to use the same approach to explore comorbidity. If a clinician knew

that a given participant had been diagnosed with panic disorder, they

might like to know the odds of that participant suffering from general-

ized anxiety disorder. This can be calculated from the posterior using

the conditional probability of having generalized anxiety disorder

given a diagnosis of panic disorder. Based on the case study, this

probability is 20%, HDI95% (6%, 39%), and meaning that peripartum

participants with panic disorder have a one in five chance of having

generalized anxiety disorder. Prediction intervals representing the

range of possible “true” values across the distribution of samples

similar to those included in the present analysis can also be calculated

(in the current case: HDIPI95% [0%, 58%]). One could likewise choose

to calculate the probability of having any number of specific disorders

(e.g., What is the probability of having a diagnosis of generalized

anxiety disorder, panic disorder, and social phobia?). The possible

questions addressable using the output of this model are limited only

by imagination and need.
4.1.3 | Easy handling of dependencies between
samples

One common challenge that faces meta‐analysts is dealing with multi-

ple samples from the same study or population; such estimates are

dependent on one another in a manner that will artificially deflate

uncertainty in the aggregate prevalence estimate if not addressed.

For the Frequentist approaches described in Section 3, this depen-

dency is often ignored; however, they are readily handled in our

Bayesian approach—and in fact, complex random structure could be

implemented. Our case study included two studies with multiple sam-

ples (Fisher, Tran, et al., 2010; Mota, Cox, Enns, Calhoun, & Sareen,

2008), which were handled by estimating a single “true” prevalence

used by all samples from the study in question.
4.1.4 | Use of prior knowledge

Our approach incorporates expert knowledge into the model to

improve estimation. As demonstrated earlier, the improvement in the

precision of an estimate due to a reasonable (but skeptical) prior can

be substantial. Given the availability of expert knowledge, this would

seem to be an easy way to improve model efficiency.
4.2 | Potential limitations

4.2.1 | Assumes access to IPD

The first limitation is that we assume access to IPD from which to esti-

mate the within‐study correlations amongst the individual disorders

(ωC). Without those data, our model must assume that ωC is known

(Model 1), which is uncommon. Although gathering individual data

can be difficult, the improved accuracy is worth the effort. This effort

could be lessened if those reporting epidemiological studies shared

their data or provided a table summarizing each participant suffering

from at least one disorder, with a list of each diagnosis they received

(e.g., 5 × panic disorder, 2 × panic disorder + posttraumatic stress

disorder; e.g., Zar et al., 2002).

4.2.2 | Assumes homogeneity of within‐study corre-
lations between disorders (ωC)

This assumption was made partially to simplify our model but also

because we do not believe that IPD from a broad enough sample of

studies is generally available to estimate heterogeneity amongst the

correlations. We highlight this as a potential area for future

development.

4.2.3 | Assumes studies are sampled from a larger
population

Interpretation of any meta‐analysis—including those based on the cur-

rent approach—is complicated by the presence of heterogeneity. This

is because samples included in the model are assumed to be drawn

randomly from a broader population of potential samples. Therefore,

consideration must be given to the populations being studied, and

the results must be interpreted in light of the distribution of prevalence

estimates (e.g., using prediction intervals).

4.2.4 | Assumes generality based on a single
application

Current findings suggest our model to be an improvement over

existing approaches; however, these findings (including the parameter

recovery simulations) are based on a particular application in the field

of Psychology. Although we expect fully that our model will generalize

to other topics, as with all new techniques, it is possible that the

observed benefits may be linked to the circumstances of the selected

case in unexpected ways. Future applications to other fields will deter-

mine whether this is true.
4.3 | Alternative approaches and extensions

Although we demonstrate our multivariate Bayesian model to be in

many ways superior to the univariate Frequentist models previously

used to estimate the prevalence of a superordinate category (e.g.,

Goodman et al., 2016), there are certainly alternative approaches

to address this problem. For example, one could use the expectation

maximization algorithm to estimate the prevalence of each of the

individual disorders, treating unmeasured disorders within a given

sample as missing data. One could also implement a multilevel, mul-

tivariate Frequentist model (e.g., using metafor; Viechtbauer, 2010)

to estimate the prevalence of the individual disorders. However, in
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either case, it would be necessary to combine the individual disorder

estimates into an estimate of the superordinate category prevalence.

This would most likely involve a simulation procedure similar to that

described in Appendix B—and would necessitate inclusion of IPD to

estimate the comorbidity across disorders. For that reason, we do not

expect either solution to be simpler than the current approach and nei-

ther would not benefit from most strengths detailed earlier. In short,

whereas other approaches may be preferable under certain circum-

stances, we believe that complex evidence synthesis often benefits

from a Bayesian approach such as ours (e.g. Ades & Sutton, 2006).

Even so, the current model represents only an initial step towards

developing a general method for estimating the prevalence of a super-

ordinate category. For that reason, there are many possible exten-

sions. As one representative example, our model could be modified

to address bias caused by variation in measurement or selection across

studies, perhaps using bias modelling methods such as those of

Turner, Spiegelhalter, Smith, and Thompson (2009). This would permit

quantification of—and adjustment for—biases due to variation in the

quality of the included studies. This would reflect a clear improvement

and is a potential target for future development.
5 | CONCLUSION

Estimating the prevalence of a superordinate category of disorders

based on studies with differing operationalization of that category is

both common and ill‐advised (e.g., Baxter et al., 2013; Goodman

et al., 2016; Guo et al., 2016; Steel et al., 2014). We propose instead

a Bayesian model using IPD that we have shown to produce unbi-

ased, efficient estimates where other approaches are biased and/or

inefficient. The accurate estimation of disease prevalence is of

profound clinical importance, because it serves to guide public policy.

To use our case study as an example, a shift from 9% to 19% in the

estimated prevalence of peripartum AD means a change from

one in 10 to one in five peripartum women suffering from one or

more AD. Such a shift has implications for the allocation of public

funds and even screening procedures. For this reason, we believe that

the current Bayesian approach will have real clinical importance and

hope that the present article will encourage future meta‐analysts to

adopt a similar approach when estimating superordinate category

prevalence in the future.
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APPENDIX A: MODEL CODE

Below is the Stan code necessary to fit Model 2 reported in text; this

code can be extended to incorporate predictors by adding a vector of

slopes to the parameter section that is then multiplied by the predictor

and added to each of the disorders within the transformed parameters

section (see commented lines). To fit Model 1 reported in text, simply

delete all lines corresponding to the individual participant data model.

If you have any comments or questions pertaining to this code, you

should contact the first author (jmfawcet@gmail.com).

data {

// General section

int<lower=1> nstudies; // Number of unique studies

int<lower=1> ndisorders; // Number of unique dis-

orders

//

// Aggregate section

//

// Number of observations (one per study per dis-

order)

int<lower=1> nobs;

// Study IDs

int<lower=1,upper=nstudies> studyid[nobs]; // s

// Sample sizes

int<lower=1> samplesize[nobs]; // N_s,d

// Number of diagnoses

http://mc-stan.org/
http://www.jstatsoft.org/v36/i03
https://doi.org/10.1002/mpr.1742
https://doi.org/10.1002/mpr.1742


12 of 13 FAWCETT ET AL.
int<lower=0> count[nobs]; // n_s,d

// Disorder IDs

int<lower=1,upper=ndisorders> disorderid[nobs];

// d

//

// IPD section

//

// Number of observations (one per individual per

disorder)

int<lower=1> ipd_nobs;

// Study IDs

int<lower=1,upper=nstudiesgt;

ipd_studyid[ipd_nobs]; // s

// 1 = diagnosis, 0 = no diagnosis, -1 = missing data

int<lower=-1,upper=1> y[ipd_nobs, ndisorders];

// y_s,d,i

//

// (Optional) Predictor Section

// Note: Assumes Predictors are centred

//

// Predictor for Aggregate Section

// real moderator[nobs];

//

// Predictor for IPD Section

// real ipd_moderator[ipd_nobs];

}

parameters {

//

// Aggregate section

//

vector[ndisorders] probit_prevalence; // theta_d

matrix[nstudies,ndisorders]

zstudy_probit_prevalence;

cholesky_factor_corr[ndisorders] L_Omega; //

cholesky of omega_B

vector<lower=0>[ndisorders] tau; // tau_d

//

// IPD section

//

cholesky_factor_corr[ndisorders] ipd_L_Omega; //

cholesky of omega_C

// nuisance that absorbs inequality constraints

real<lower=0,upper=1> u[ipd_nobs, ndisorders];

//

// (Optional) Predictor section
//

// vector[ndisorders] slopes;

}

transformed parameters {

vector[ndisorders]

study_probit_prevalence[nstudies]; // mu_s,d

for(i in 1:nstudies) {

study_probit_prevalence[i] = probit_prevalence

+ tau .* (L_Omega *

to_vector(zstudy_probit_prevalence[i]));

}

}

model {

//

// Aggregate section

//

L_Omega ~ lkj_corr_cholesky(2);

// SDs of .5 or less are common

tau ~ normal(0,.25);

to_vector(zstudy_probit_prevalence) ~ normal(0,

1);

// Mean disorder prevalences are likely to be in

range 0.6%-10%

probit_prevalence ~ normal(-1.88, .3);

//

// (Optional) Prior for Predictor

//

// slopes ~ normal(0,1);

// Assumes Independence w/i studies – incorrect,

but necessary to

// model the aggregate data for which IPD is

unavailable

for(i in 1:nobs) {

count[i] ~ binomial(samplesize[i],

Phi_approx(study_probit_prevalence[studyid[i]]

[disorderid[i]]));

//

// If including predictors instead use…

//

// count[i] ~ binomial(samplesize[i],

//

Phi_approx(study_probit_prevalence[studyid[i]]

[disorderid[i]] +

// slopes[disorderid[i]]*moderator[i]));

}

//
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// IPD section

//

ipd_L_Omega ˜ lkj_corr_cholesky(2);

// implicit: u is iid standard uniform a priori

// compute likelihood contribution for each indi-

vidual and each

// disorder conditional on previous disorders for

this individual

for (j in 1:ipd_nobs) {

vector[ndisorders] z;

real prev;

prev = 0; // prev is a correction on the probit

scale to allow for values of previous disorders for this

individual

for (d in 1:ndisorders) {

// Phi and inv_Phi may overflow and / or be inac-

curate

real bound; // threshold on Phi(y*)

bound = Phi(-

(study_probit_prevalence[ipd_studyid[j]][d] +

prev) / ipd_L_Omega[d,d]);

// If including predictors instead use…

//

//

// bound = Phi( -

(study_probit_prevalence[ipd_studyid[j]][d] +

// slopes[d]*ipd_moderator[j] + prev) /

ipd_L_Omega[d,d]);

if (y[j,d] == 1) {

target += log1m(bound); // log-likelihood

increment

// Ensures that y* is drawn from its conditional

distribution

// given previous y values

real t;

t = bound + (1 - bound) * u[j,d];

z[d] = inv_Phi(t); // implies latent variable

is positive

}

else if (y[j,d] == 0) {

target += log(bound); // log-likelihood incre-

ment
// Ensures that y* is drawn from its conditional

distribution

// given previous y values

real t;

t = bound * u[j,d];

z[d] = inv_Phi(t); // implies latent variable

is negative

}

else {

z[d] = inv_Phi(u[j,d]); // latent variable is

unbounded

}

if (d < ndisorders) prev = ipd_L_Omega[d+1,1:d] *

head(z, d);

// Model implies z is truncated standard normal

// thus utility — mu + ipd_L_Omega * z —

// is truncated multivariate normal; the above code

// gives the conditional distribution of y* given past

// y* values

}

}

}

generated quantities {

// Between-study correlation matrix

corr_matrix[ndisorders] Omega; // omega_B

// Between-disorder correlation matrix

corr_matrix[ndisorders] ipd_Omega; // omega_C

//

// Aggregate section

//

Omega =

multiply_lower_tri_self_transpose(L_Omega);

//

// IPD section

//

ipd_Omega =

multiply_lower_tri_self_transpose(ipd_L_Omega);

}

APPENDIX B: R CODE NECESSARY TO
GENERATE OVERALL PREVALENCE
ESTIMATES

The R code necessary to generate the overall prevalence estimates of

the models reported in Appendix B is included as a separate file.


